If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = 4800 + -560x + 12x2 Solving 0 = 4800 + -560x + 12x2 Solving for variable 'x'. Combine like terms: 0 + -4800 = -4800 -4800 + 560x + -12x2 = 4800 + -560x + 12x2 + -4800 + 560x + -12x2 Reorder the terms: -4800 + 560x + -12x2 = 4800 + -4800 + -560x + 560x + 12x2 + -12x2 Combine like terms: 4800 + -4800 = 0 -4800 + 560x + -12x2 = 0 + -560x + 560x + 12x2 + -12x2 -4800 + 560x + -12x2 = -560x + 560x + 12x2 + -12x2 Combine like terms: -560x + 560x = 0 -4800 + 560x + -12x2 = 0 + 12x2 + -12x2 -4800 + 560x + -12x2 = 12x2 + -12x2 Combine like terms: 12x2 + -12x2 = 0 -4800 + 560x + -12x2 = 0 Factor out the Greatest Common Factor (GCF), '4'. 4(-1200 + 140x + -3x2) = 0 Ignore the factor 4.Subproblem 1
Set the factor '(-1200 + 140x + -3x2)' equal to zero and attempt to solve: Simplifying -1200 + 140x + -3x2 = 0 Solving -1200 + 140x + -3x2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. 400 + -46.66666667x + x2 = 0 Move the constant term to the right: Add '-400' to each side of the equation. 400 + -46.66666667x + -400 + x2 = 0 + -400 Reorder the terms: 400 + -400 + -46.66666667x + x2 = 0 + -400 Combine like terms: 400 + -400 = 0 0 + -46.66666667x + x2 = 0 + -400 -46.66666667x + x2 = 0 + -400 Combine like terms: 0 + -400 = -400 -46.66666667x + x2 = -400 The x term is -46.66666667x. Take half its coefficient (-23.33333334). Square it (544.4444448) and add it to both sides. Add '544.4444448' to each side of the equation. -46.66666667x + 544.4444448 + x2 = -400 + 544.4444448 Reorder the terms: 544.4444448 + -46.66666667x + x2 = -400 + 544.4444448 Combine like terms: -400 + 544.4444448 = 144.4444448 544.4444448 + -46.66666667x + x2 = 144.4444448 Factor a perfect square on the left side: (x + -23.33333334)(x + -23.33333334) = 144.4444448 Calculate the square root of the right side: 12.018504266 Break this problem into two subproblems by setting (x + -23.33333334) equal to 12.018504266 and -12.018504266.Subproblem 1
x + -23.33333334 = 12.018504266 Simplifying x + -23.33333334 = 12.018504266 Reorder the terms: -23.33333334 + x = 12.018504266 Solving -23.33333334 + x = 12.018504266 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '23.33333334' to each side of the equation. -23.33333334 + 23.33333334 + x = 12.018504266 + 23.33333334 Combine like terms: -23.33333334 + 23.33333334 = 0.00000000 0.00000000 + x = 12.018504266 + 23.33333334 x = 12.018504266 + 23.33333334 Combine like terms: 12.018504266 + 23.33333334 = 35.351837606 x = 35.351837606 Simplifying x = 35.351837606Subproblem 2
x + -23.33333334 = -12.018504266 Simplifying x + -23.33333334 = -12.018504266 Reorder the terms: -23.33333334 + x = -12.018504266 Solving -23.33333334 + x = -12.018504266 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '23.33333334' to each side of the equation. -23.33333334 + 23.33333334 + x = -12.018504266 + 23.33333334 Combine like terms: -23.33333334 + 23.33333334 = 0.00000000 0.00000000 + x = -12.018504266 + 23.33333334 x = -12.018504266 + 23.33333334 Combine like terms: -12.018504266 + 23.33333334 = 11.314829074 x = 11.314829074 Simplifying x = 11.314829074Solution
The solution to the problem is based on the solutions from the subproblems. x = {35.351837606, 11.314829074}Solution
x = {35.351837606, 11.314829074}
| 4z-6=(6z+2) | | 12x^2-150+x=0 | | 6+4x+1-2x=-7+3x+9-2x | | 7c+4d-c-3d= | | (1.2*10^-2)=(x^2)/(0.01-x) | | 22-3f=15m | | P(t)=-t^4+72t^2+225 | | 14.99+0.82x=165.87 | | 2x+3y+6x+5y= | | (2x-5)(7x+8)=0 | | -10=10(k-8) | | A=m+mrt | | 2x^3-16x^2-40x=0 | | 2y+6x=108 | | 15x+6(x+4)=255 | | 2x+15+2x-3=57-3x+39 | | 7x+12=12x+32 | | 8n+64=15n-2 | | 3x+5(7x+10)=126 | | X=21+69 | | (1/5)/(1/45) | | 3.7=22.9-6y | | 7a+8b+2a-3b= | | 10=a(-3+23)(-3-17) | | 3n-1=14+2b | | q=6k+4L | | 9x-216=2x-6 | | X^4-16x^2=x^2+18 | | 9-3x+6=4x+1 | | 4x-(2x-5x)+100=800 | | 24s-18= | | 3x-188=11x+122 |